PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Memorial de cálculo - SPDA

Identificação

Título do projeto: Projeto Elétrico

Proprietário: Câmara Municipal de Piên PR

Autor do projeto: Thomas Gabriel Jagher

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

O presente documento tem por finalidade descrever o projeto de construção de um Sistema de Proteção Contra Descargas Atmosféricas (SPDA), elaborado de acordo com a norma NBR 5419/2015

Dados da edificação

A área de exposição equivalente (Ad) corresponde à área do plano da estrutura prolongada em todas as direções, de modo a levar em conta sua altura. Os limites da área de exposição equivalente estão afastados do perímetro da estrutura por uma distância correspondente à altura da estrutura no ponto considerado.

Dados do projeto

Classificação da estrutura

Nível de proteção: III

Densidade de descargas atmosféricas

Densidade de descargas atmosféricas para a terra: 7.52/km² x ano

Número de descidas

Quantidade de descidas (N), em decorrência do espaçamento médio dos condutores de descida e do nível de proteção.

Pavimento	Perímetro (m)	Espaçamento (m)	Número de descidas
Indefinido	Indefinido	Indefinido	Indefinido

Seção das cordoalhas

Seções mínimas dos materiais utilizados no SPDA.

Material	Captor (mm²)	Descida (mm²)	Aterramento (mm²)
Cobre	35	35 a 50	50

Definições padrão NBR 5419/2015 em referência ao nível de proteção

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Com o nível de proteção definido, a NBR 5419/2015 apresenta as características do SPDA a serem adotadas no projeto:

Ângulo de proteção (método Franklin) = Indefinido

Largura máxima da malha (método Gaiola de Faraday) = 15 m

Raio da esfera rolante (método Eletrogeométrico) = 45 m

Anéis de cintamento

Eletrodo de aterramento formando um anel fechado em volta da estrutura.

Pavimento	Nível (m)	Altura em relação ao solo (m)
Cobertura	6.00	7.20

Risco de perda de vida humana (R1) - Padrão

Os resultados para risco de perda de vida humana (incluindo ferimentos permanentes) levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Ra (risco de ferimentos a seres vivos causado por descargas na estrutura)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura e fora, nas zonas até 3m ao redor dos condutores de descidas.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano
Nd = Ng x Ad x Cd x 10^-6	0/ano

Pa (probabilidade de uma descarga na estrutura causar ferimentos a seres vivos por choque elétrico)

Pta (Probabilidade de uma descarga a uma estrutura causar choque a seres vivos devido a tensões de toque e de passo)	1
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)	1x10^-1
Pa = Pta x Pb	1x10^-1

La (valores de perda na zona considerada)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-4
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
La = rt x Lt x (nz/nt) x (tz/8760)	1x10^-6

 $Ra = Nd \times Pa \times La$

Ra = 0/ano

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x a	ino	
Nd = Ng x Ad x Cd x 10^-6	0/ano		
Pb (Probabilidade de uma descarga na estrutura danos físicos)	causar	1x10^-1	

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lb = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	5x10^-3

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1
Ng (Densidade de descargas atmosfér a terra)	icas para 7.52/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{-6}$	0/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de	Linhas de
	energia (E)	telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os	1	1
DPS foram projetados)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento	1	1
e isolamento)	ı	1
Pc.E = Pspd.E x Cld.E, Pc.T = Pspd.T x Cld.T	1	1
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1	

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lc = Lo x (nz/nt) x (tz/8760)	1x10^-1

 $Rc = Nd \times Pc \times Lc$

Rc = 0/ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06 Anderson D PAULA PROJETOS LTDA

QiBuilder

13/12/2023 11:09:45

Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	0 m²
$Nm = Ng \times Am \times 10^{-6}$	0/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	1	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	1	1
Pms = (Ks1 x Ks2 x Ks3 x Ks4) ²	1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1	1
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1	

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lm = Lo x (nz/nt) x (tz/8760)	1x10^-1

 $Rm = Nm \times Pm \times Lm$

Rm = 0/ano

Componente Ru (risco de ferimentos a seres vivos causado por descargas na linha conectada)

Componente relativo a ferimentos aos seres vivos, causados por choque elétrico devido às tensões de toque e passo dentro da estrutura.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmosféricas para a terra)		7.52/kr	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)		
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²		
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25		
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano	0/ano		
Ptu (Probabilidade de uma estrutura em uma linha que adentre a estrutura causar choques a seres vivos devidos a tensões de toque perigosas)			1	
Peb (Probabilidade em função do NP para qual os DPS foram projetados)			0.05	

Pu (probabilidade de uma descarga em uma linha causar ferimentos a seres vivos por choque elétrico)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pu = Ptu x Peb x Pld x Cld	5x10^-2	5x10^-2

Lu (valores de perda na zona considerada)

rt (Fator de redução em função do tipo da superfície do solo ou do piso)	1x10^-4
Lt (Número relativo médio típico de vítimas feridas por choque elétrico devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lu = rt \times Lt \times (nz / nt) \times (tz / 8760)$	1x10^-6

Ru = Ru.E + Ru.T

 $Ru = [(NI.E + Ndj.E) \times Pu.E \times Lu] + [(NI.T + Ndj.T) \times Pu.T \times Lu]$

 $Ru = 3.01x10^{-9}/ano$

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmost a terra)	féricas para	7.52/kr	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E		Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os DF projetados)	PS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pv = Peb x Pld x Cld	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
hz (Fator aumentando a quantidade relativa de perda na presença de um perigo especial)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lv = rp x rf x hz x Lf x (nz/nt) x (tz/8760)	5x10^-3

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06 Anderson
D PAULA
PROJETOS LTDA

13/12/2023
11:09:45

 $Rv = [(NI.E + Ndj.E) \times Pv.E \times Lv] + [(NI.T + Ndj.T) \times Pv.T \times Lv]$

 $Rv = 1.5x10^{-5/ano}$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmosfa terra)	féricas para	7.52/kr	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pw = Pspd x Pld x Cld	1	1

Lw (valores de perda na zona considerada)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06 Anderson
D PAULA
PROJETOS LTDA

13/12/2023
11:09:45

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
$Lw = Lo \times (nz/nt) \times (tz/8760)$	1x10^-1

Rw = Rw.E + Rw.T

 $Rw = [(NI.E + Ndj.E) \times Pw.E \times Lw] + [(NI.T + Ndj.T) \times Pw.T \times Lw]$

 $Rw = 6.02x10^{-3}/ano$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas de energia (E)		Linhas de te	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
Ai = 4000 x LI	4000000 m ²	2	4000000 m ²	
Ng (Densidade de descargas atmos	féricas para	7.52/kr	n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x Ct x 10^-	3.01/ano	3.01/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1

		QiBuilder		
PAULA PROJETOS LTDA PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06		Anderson D PAULA PROJETO	S LTDA	13/12/2023 11:09:45
Pli (Probabilidade de falha de sistemas internos devido a uma descarga perto da linha conectada dependendo das características da linha e dos equipamentos)	1		1	
Cli (Fator que depende da blindagem, do aterramento e das condições da isolação da linha)	1		1	
Pz = Pspd x Pli x Cli	1	•	1	

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
tz (Tempo, durante o qual as pessoas estão presentes na zona considerada)	8760 h/ano
Lz = Lo x (nz/nt) x (tz/8760)	1x10^-1

Rz = Rz.E + Rz.T

 $Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$

 $Rz = 6.02x10^{-1/ano}$

Resultado de R1

O risco R1 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

R1 = Ra + Rb + Rc + Rm + Ru + Rv + Rw + Rz

 $R1 = 6.08x10^{-1/ano}$

Risco de perdas de serviço ao público (R2) - Padrão

Os resultados para risco de perda de serviço ao público levam em consideração os componentes de risco de descargas na estrutura e próximo desta, e descargas em uma linha conectada à estrutura e próximo desta.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x a	ino	
Nd = Ng x Ad x Cd x 10^-6	0/ano		
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		1x10^-1	

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
Lb = rp x rf x Lf x (nz/nt)	5x10^-2

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano
$Nd = Ng \times Ad \times Cd \times 10^{4}$	0/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

Linhas de	Linhas de
energia (E)	telecomunicações (T)

QiBuilder PAULA PROJETOS LTDA Anderson 13/12/2023 PROJETOS DE ENGENHARIA D PAULA 11:09:45 PROJETOS LTDA CNPJ 39.623.943/0001-06 Pspd (Probabilidade em função do nível de proteção para qual os 1 DPS foram projetados) Cld (Fator dependendo das condições de blindagem, aterramento 1 1 e isolamento) Pc.E = Pspd.E x Cld.E, Pc.T = Pspd.T x Cld.T 1 1 $Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$ 1

Lc (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
Lc = Lo x (nz/nt)	1x10^-2

 $Rc = Nd \times Pc \times Lc$

Rc = 0/ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	0 m²
$Nm = Ng \times Am \times 10^{-6}$	0/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	1	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	1	1
Pms = (Ks1 x Ks2 x Ks3 x Ks4) ²	1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1	1

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

Anderson	
D PAULA	
PROJETOS LTDA	

QiBuilder

13/12/2023 11:09:45

 $Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$

1

Lm (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
Lm = Lo x (nz/nt)	1x10^-2

 $Rm = Nm \times Pm \times Lm$

Rm = 0/ano

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te (T)	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m²		40000 m ²	
Ng (Densidade de descargas atmos a terra)	féricas para	7.52/kr	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E		Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os [projetados)	OPS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pv = Peb x Pld x Cld	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
Lv = rp x rf x Lf x (nz/nt)	5x10^-2

Rv = Rv.E + Rv.T

 $Rv = [(NI.E + Ndj.E) \times Pv.E \times Lv] + [(NI.T + Ndj.T) \times Pv.T \times Lv]$

 $Rv = 1.5x10^{-4}/ano$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te	lecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmost	féricas para	7.52/kn	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06 Anderson D PAULA PROJETOS LTDA

QiBuilder

13/12/2023 11:09:45

NI = Ng x Al x Ci x Ce x Ct x 10^-6 3.01x10^-2/ano 3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pw = Pspd x Pld x Cld	1	1

Lw (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
Lw = Lo x (nz/nt)	1x10^-2

Rw = Rw.E + Rw.T

 $Rw = [(NI.E + Ndj.E) \times Pw.E \times Lw] + [(NI.T + Ndj.T) \times Pw.T \times Lw]$

 $Rw = 6.02x10^{-4}/ano$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

Linhas de	Linhas de telecomunicações
energia (E)	(T)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06 Anderson
D PAULA
PROJETOS LTDA

13/12/2023
11:09:45

LI (Comprimento da seção de linha)	1000 m		1000 m	
Ai = 4000 x LI	4000000 m ²	!	4000000 m ²	
Ng (Densidade de descargas atmosf a terra)	éricas para	7.52/kr	n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x Ct x 10^-	3.01/ano	3.01/ano

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Pli (Probabilidade de falha de sistemas internos devido a uma descarga perto da linha conectada dependendo das características da linha e dos equipamentos)	1	1
Cli (Fator que depende da blindagem, do aterramento e das condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	1	1

Lz (valores de perda na zona considerada)

Lo (Número relativo médio típico de vítimas por falha de sistemas internos devido a um evento perigoso)	1x10^-2
nz (Número de pessoas na zona considerada)	160
nt (Número total de pessoas na estrutura)	160
Lz = Lo x (nz/nt)	1x10^-2

Rz = Rz.E + Rz.T

 $Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$

 $Rz = 6.02x10^{-2}/ano$

Resultado de R2

O risco R2 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

R2 = Rb + Rc + Rm + Rv + Rw + Rz

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

 $R2 = 6.09x10^{-2}$ ano

Risco de perdas de patrimônio cultural (R3) - Padrão

Os resultados para risco de perda de patrimônio cultural levam em consideração os componentes de risco de descargas na estrutura e em uma linha conectada à estrutura.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x a	ino	
Nd = Ng x Ad x Cd x 10^-6	0/ano		
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		1x10^-1	

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
cz (Valor do patrimônio cultural na zona considerada) (R\$)	0
ct (Valor total da edificação e conteúdo da estrutura) (R\$)	1000000
Lb = rp x rf x Lf x (cz/ct)	0

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmost a terra)	féricas para	7.52/kr	n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E		Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os DF projetados)	PS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pv = Peb x Pld x Cld	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
Lf (Número relativo médio típico de vítimas feridas por danos físicos devido a um evento perigoso)	1x10^-1
cz (Valor do patrimônio cultural na zona considerada) (R\$)	0
ct (Valor total da edificação e conteúdo da estrutura) (R\$)	1000000
Lv = rp x rf x Lf x (cz/ct)	0

Rv = Rv.E + Rv.T

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Rv = 0/ano

Resultado de R3

O risco R3 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

R3 = Rb + Rv

R3 = 0/ano

Risco de perda de valores econômicos (R4) - Padrão

Os resultados para o risco de perda de valor econômico levam em consideração a avaliação da eficiência do custo da proteção pela comparação do custo total das perdas com ou sem as medidas de proteção. Neste caso, a avaliação das componentes de risco R4 devem ser feitas no sentido de avaliar tais custos.

Componente Rb (risco de danos físicos na estrutura causado por descargas na estrutura)

Componente relativo a danos físicos, causados por centelhamentos perigosos dentro da estrutura iniciando incêndio ou explosão, os quais podem também colocar em perigo o meio ambiente.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1		
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano		
Nd = Ng x Ad x Cd x 10^-6	0/ano		
Pb (Probabilidade de uma descarga na estrutura causar danos físicos)		1x10^-1	

Lb (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Lf (Valor relativo médio típico de todos os valores atingidos pelos danos físicos devido a um evento perigoso)	1x10^-1
ca (Valor dos animais na zona) (R\$)	0
cb (Valor da edificação relevante à zona) (R\$)	0
cc (Valor do conteúdo da zona) (R\$)	0
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lb = rp x rf x Lf x ((ca+cb+cc+cs)/CT)	5x10^-2

 $Rb = Nd \times Pb \times Lb$

Rb = 0/ano

Componente Rc (risco de falha dos sistemas internos causado por descargas na estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nd (número de eventos perigosos para a estrutura)

Cd (Fator de localização)	2.5x10^-1
Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano
$Nd = Na \times Ad \times Cd \times 10^{-6}$	0/ano

Pc (probabilidade de uma descarga na estrutura causar falha a sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os	1	1
DPS foram projetados)	-	•
Cld (Fator dependendo das condições de blindagem, aterramento	1	1
e isolamento)	!	1
Pc.E = Pspd.E x Cld.E, Pc.T = Pspd.T x Cld.T	1	1
$Pc = 1 - [(1 - Pc.E) \times (1 - Pc.T)]$	1	

Lc (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	
Lc = Lo x (cs/CT)	1x10^-4

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Rc = 0/ano

Componente Rm (risco de falha dos sistemas internos causado por descargas perto da estrutura)

Componente relativo a falhas de sistemas internos, causados por pulsos eletromagnéticos devido às descargas atmosféricas. Perdas de serviço ao público pode ocorrer em todos os casos junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Nm (Número médio anual de eventos perigosos devido a descargas perto da estrutura)

Ng (Densidade de descargas atmosféricas para a terra)	7.52/km² x ano
Am (Área de exposição equivalente de descargas que atingem perto da estrutura)	0 m²
$Nm = Ng \times Am \times 10^{\circ}-6$	0/ano

Pm (probabilidade de uma descarga perto da estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Ks1 (Fator relevante à efetividade da blindagem por malha de uma estrutura)	1	1
Ks2 (Fator relevante à efetividade da blindagem por malha dos campos internos de uma estrutura)	1	1
Ks3 (Fator relevante às características do cabeamento interno)	1	1
Uw (Tensão suportável nominal de impulso do sistema a ser protegido) (kV)	1	1
Ks4 (Fator relevante à tensão suportável de impulso de um sistema)	1	1
Pms = (Ks1 x Ks2 x Ks3 x Ks4) ²	1	1
Pm.E = Pspd.E x Pms.E, Pm.T = Pspd.T x Pms.T	1	1
$Pm = 1 - [(1 - Pm.E) \times (1 - Pm.T)]$	1	

Lm (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-4
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
Lm = Lo x (cs/CT)	1x10^-4

 $Rm = Nm \times Pm \times Lm$

Rm = 0/ano

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Componente Rv (risco de danos físicos na estrutura causado por descargas na linha conectada)

Componente relativo a danos físicos (incêndio ou explosão iniciados por centelhamentos perigosos entre instalações externas e partes metálicas, geralmente no ponto de entrada da linha na estrutura), devido à corrente da descarga atmosférica transmitida, ou ao longo das linhas.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de telecomunicaçõe (T)	
LI (Comprimento da seção de linha)	1000 m		1000 m	
AI = 40 x LI	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmost a terra)	ensidade de descargas atmosféricas para 7.52/km² x ano		n² x ano	

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E		Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²		0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25		0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano		0/ano
Peb (Probabilidade em função do NP para qual os E projetados)	OPS foram	0.05	

Pv (probabilidade de uma descarga em uma linha causar danos físicos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pld (Probabilidade dependendo da resistência Rs da blindagem do cabo e da tensão suportável de impulso Uw do equipamento)	1	1
Cld (Fator dependendo das condições de blindagem, aterramento e isolamento)	1	1
Pv = Peb x Pld x Cld	5x10^-2	5x10^-2

Lv (valores de perda na zona considerada)

rp (Fator de redução em função das providências tomadas para reduzir as consequências de um incêndio)	5x10^-1
rf (Fator de redução em função do risco de incêndio ou explosão na estrutura)	1
Lf (Valor relativo médio típico de todos os valores atingidos pelos danos físicos devido a um evento perigoso)	1x10^-1
ca (Valor dos animais na zona) (R\$)	0
cb (Valor da edificação relevante à zona) (R\$)	0
cc (Valor do conteúdo da zona) (R\$)	0

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06 Anderson D PAULA PROJETOS LTDA

QiBuilder

13/12/2023 11:09:45

cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0	
CT: custo total de perdas econômicas da estrutura (valores em \$)	0	
Lv = rp x rf x Lf x ((ca+cb+cc+cs)/CT)	5x1	0^-2

Rv = Rv.E + Rv.T

 $Rv = [(NI.E + Ndj.E) \times Pv.E \times Lv] + [(NI.T + Ndj.T) \times Pv.T \times Lv]$

 $Rv = 1.5x10^{-4}/ano$

Componente Rw (risco de falha dos sistemas internos causado por descargas na linha conectada)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda de vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Al (área de exposição equivalente de descargas para a terra que atingem a linha)

	Linhas de energia (E)		Linhas de te (T)	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
$AI = 40 \times LI$	40000 m ²		40000 m ²	
Ng (Densidade de descargas atmost a terra)	féricas para	ricas para 7.52/kr		

NI (Número médio anual de eventos perigosos devido a descargas na linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
NI = Ng x Al x Ci x Ce x Ct x 10^-	3.01x10^-2/ano	3.01x10^-2/ano

Ndj (número de eventos perigosos para uma estrutura adjacente)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Adj (Área de exposição equivalente da estrutura adjacente)	0 m²	0 m²
Cdj (Fator de localização da estrutura adjacente)	0.25	0.25
Ndj = Ng x Adj x Cdj x Ct x 10^-6	0/ano	0/ano

Pw (probabilidade de uma descarga em uma linha causar falha a sistemas internos)

Linhas de	Linhas de
energia (E)	telecomunicações (T)

Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados) Pid (Probabilidade dependendo da resistência Rs da blindagem do 1 QiBuilder Anderson D PAULA PROJETOS LTDA Anderson D PAULA PROJETOS LTDA

13/12/2023

11:09:45

Lw (valores de perda na zona considerada)

isolamento)

Pw = Pspd x Pld x Cld

cabo e da tensão suportável de impulso Uw do equipamento)
Cld (Fator dependendo das condições de blindagem, aterramento e

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-4
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	0
$Lw = Lo \times (cs/CT)$	1x10^-4

1

1

Rw = Rw.E + Rw.T

 $Rw = [(NI.E + Ndj.E) \times Pw.E \times Lw] + [(NI.T + Ndj.T) \times Pw.T \times Lw]$

 $Rw = 6.02x10^{-6}/ano$

Componente Rz (risco de falha dos sistemas internos causado por descargas perto da linha)

Componente relativo a falhas de sistemas internos, causados por sobretensões induzidas nas linhas que entram na estrutura e transmitidas a esta. Perda de serviço ao público pode ocorrer em todos os casos, junto com a perda da vida humana, nos casos de estruturas com risco de explosão, e hospitais ou outras estruturas onde falhas de sistemas internos possam imediatamente colocar em perigo a vida humana.

Ai (área de exposição equivalente de descargas para a terra perto da linha)

	Linhas de energia (E)		Linhas de te (T)	elecomunicações
LI (Comprimento da seção de linha)	1000 m		1000 m	
Ai = 4000 x LI	4000000 m ²	!	4000000 m ²	
Ng (Densidade de descargas atmost a terra)	féricas para	7.52/km	n² x ano	

Ni (Número médio anual de eventos perigosos devido a descargas perto da linha)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Ci (Fator de instalação da linha)	1	1
Ct (Fator do tipo de linha)	1	1
Ce (Fator ambiental)	0.1	0.1
Ni = Ng x Ai x Ci x Ce x Ct x 10^-	3.01/ano	3.01/ano

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Pz (probabilidade de uma descarga perto da linha conectada à estrutura causar falha de sistemas internos)

	Linhas de energia (E)	Linhas de telecomunicações (T)
Pspd (Probabilidade em função do nível de proteção para qual os DPS foram projetados)	1	1
Pli (Probabilidade de falha de sistemas internos devido a uma descarga perto da linha conectada dependendo das características da linha e dos equipamentos)	1	1
Cli (Fator que depende da blindagem, do aterramento e das condições da isolação da linha)	1	1
Pz = Pspd x Pli x Cli	1	1

Lz (valores de perda na zona considerada)

Lo (Valor relativo médio típico de todos os valores danificados pela falha de sistemas internos devido a um evento perigoso)	1x10^-4
cs (Valor dos sistemas internos incluindo suas atividades na zona) (R\$)	0
CT: custo total de perdas econômicas da estrutura (valores em \$)	
Lz = Lo x (cs/CT)	1x10^-4

Rz = Rz.E + Rz.T

 $Rz = (Ni.E \times Pz.E \times Lz) + (Ni.T \times Pz.T \times Lz)$

 $Rz = 6.02x10^{-4}/ano$

Resultado de R4

O risco R4 é um valor relativo a uma provável perda anual média, calculado a partir da soma dos componentes de risco citados.

R4 = Rb + Rc + Rm + Rv + Rw + Rz

 $R4 = 7.58x10^{-4}/ano$

Avaliação do custo de perdas do valor econômico - Padrão

Resultado das perdas de valor econômico

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

As perdas de valor econômico são afetadas diretamente pelas características de cada tipo de perda da zona. O custo total de perdas da estrutura (CT) é o somatório dos valores estabelecidos para cada tipo de perda da estrutura e quando multiplicado pelo risco (R4) obtêm-se o custo anual de perdas (CL).

Custo total de perdas (ct)

O custo total de perdas (ct) é a somatória dos valores de perdas na zona, compreendendo o valor dos animais na zona (ca), o valor da edificação relevante à zona (cb), o valor do conteúdo da zona (cc) e o valor dos sistemas internos incluindo suas atividades na zona (cs). O seu valor calculado é monetário.

$$ct = ca + cb + cc + cs$$

ct = 0

Custo total de perdas da estrutura (CT)

O custo total de perdas da estrutura (CT) é a somatória dos valores de perdas de todas as zonas da estrutura. O seu valor calculado é monetário.

$$CT = ct (z1) + ... ct (zn)$$

CT = 0

Custo anual de perdas (CL)

O custo anual de perdas (CL) é a multiplicação entre o custo total de perdas (CT) e o risco (R4), na qual contribui para análise do risco econômico total da estrutura. O seu valor calculado é monetário.

 $CL = CT \times R4$

CL = 0

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

Avaliação final do risco - Estrutura

O risco é um valor relativo a uma provável perda anual média. Para cada tipo de perda que possa ocorrer na estrutura, o risco resultante deve ser avaliado. O risco para a estrutura é a soma dos riscos relevantes de todas as zonas da estrutura; em cada zona, o risco é a soma de todos os componentes de risco relevantes na zona.

Zona	R1	R2	R3	R4
Estrutura	60766.64x10^-5	60.92x10^-3	0	0.758x10^-3

Foram avaliados os seguintes riscos da estrutura:

R1: risco de perda de vida humana (incluindo ferimentos permanentes)

 $R1 = 60766.64 \times 10^{-5}$ /ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-5

R2: risco de perdas de serviço ao público

 $R2 = 60.92x10^{-3}$ ano

Status: A instalação de um sistema de SPDA é necessária, segundo a norma NBR5419/2015, pois R > 10^-3

R3: risco de perdas de patrimônio cultural

R3 = 0/ano

Status: A instalação de um sistema de SPDA não é necessária, segundo a NBR5419/2015, pois R <= 10^-4

R4: risco de perda de valor econômico

 $R4 = 0.758 \times 10^{-3}$ ano

CT: custo total de perdas de valor econômico da estrutura (valores em \$)

PROJETOS DE ENGENHARIA CNPJ 39.623.943/0001-06

QiBuilder	
Anderson D PAULA PROJETOS LTDA	13/12/2023 11:09:45

CT = 0

CL: custo anual de perdas (valores em \$)

CL = 0